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Abstract
This contribution considers recent developments in understanding the behaviour
of vibro-fluidized beads in containers partitioned into several connected
chambers. The system is studied theoretically by means of a phenomenological
mean-field approach. The equations governing the evolution of the average
occupancy and the average kinetic energy of each compartment are derived by
means of a simplified treatment of the Boltzmann equation.

Some applications of the method are presented. These include the study of
a simple granular gas in a many-compartment container and a binary granular
mixture in a two-compartment container.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the properties of granular gases, i.e. rarefied systems of macroscopic particles
mutually interacting by strongly repulsive and dissipative forces, is currently a subject of great
interest for a variety of reasons which range from technological applications, including grain
separation and jam formation, to fundamental issues for the statistical mechanics of systems
far from equilibrium [1–4]. A vibro-fluidized granular gas is a dilute collection of grains set
in motion by a tapping or shaking mechanism, which balances the energy dissipated by the
inelastic collisions. The steady state properties of such a system display interesting analogies
with those of standard molecular fluids, but also display original features. One of these features
is the spontaneous tendency of the particles to form clusters. Uniformity and homogeneity of
large assemblies of fluidized grains are the exception rather than the rule. That is for two main
reasons: (a) the walls of the containers represent a strong perturbation; (b) the homogeneous
state is intrinsically unstable, and velocity and density correlations lead to the appearance of
vortices and clusters [5–8].
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Figure 1. Sand demon in a two-compartment system. The left picture shows a symmetric
configuration obtained when the grains are subjected to a strong driving force, while the right
picture represents an instance of an asymmetric configuration which occurs for a weaker driving
intensity.

In a pioneering experiment, Nordmeier and Schlichting [9] have shown that a collection
of grains vigorously agitated in a two-compartment vessel (the compartments being connected
by a hole located at a certain height from the bottom vibrating base) can visit all regions of
the container. As a consequence, the populations in the two compartments are statistically
equal. The situation changes when the amplitude of the vibrations decreases below a certain
critical value. In fact, when the largest altitude reached by the particles is comparable with
the elevation of the hole, one observes a separation process where a minority of ‘hot’ quickly
moving particles migrates to one side, while the majority of ‘cold’ slowly moving particles
spontaneously condenses on the other side, as shown in figure 1. The asymmetry increases
as the vibration intensity decreases. The feature that the particles in the scarcely occupied
compartment are on the average faster than the others has motivated the name ‘Maxwell’s
demon made of sand’ given to the experiment, in analogy with the hypothetical being who
looks at gas molecules, and depending on their speeds opens or closes a door collecting all the
molecules faster than average on one side, and the slower ones on the other side.

Notwithstanding this spectacular effect, the phenomenon possesses a simple qualitative
explanation and the second law of thermodynamics is not violated, since the grains can adsorb
and dissipate energy unlike the molecules of an ideal gas. When the driving is sufficiently
low, the uniform state is unstable since to a local density increase there corresponds a decrease
in the local kinetic energy, which causes fewer particles to flow away from such a region.
Eventually, a stationary state is reached where few grains remain on one side and undergo few
collisions, while the remaining congregate on the other side a form a colder and denser cluster.
Eggers has explained the origin of the phenomenon using a hydrodynamic theory [10] known
as the Flux model, which has been extended by the Twente group [11–13], in order to analyse
situations where more than two compartments were involved.

Later, Lipowski and Droz [14, 15] have elaborated a generalization of the Ehrenfest urn
model [16], which could be treated with the standard tools of statistical mechanics such as a
master equation approach or Monte Carlo simulation and has the advantage of being simple
enough to allow a great deal of analytical calculations and extensive numerical computations.
In the simplest version of their model, N particles are distributed between two urns. Each
particle can jump from one urn to the other with a probability which decreases as the number
of particles in the former increases. Thus the exchange rate depends only on the number of
particles at the departure site and not on the number of particles at the arrival site. With respect
to such a property, the model is similar to a zero range process [17, 18]. When the energy
dissipated is sufficiently large with respect to the energy injected, a spontaneous symmetry
breaking takes place. Due to its great simplicity, the model allows for a great deal of analytic
work. However, the extension of such ‘minimal’ models to more than one component where
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each species has its own temperature is quite problematic. Therefore, it is necessary to consider
in some detail the microscopic dynamics of the grains. Kinetic theory has also been applied to
the problem of two compartments by Brey and co-workers [19], while a coarse-grained version
of the kinetic approach was employed in [20–22].

The present paper is organized as follows. In the first section we define the model and
introduce the statistical description of the system, based on a Boltzmann equation for the
distribution functions, modified to take into account the stochastic driving and the presence
of the compartments. At this stage we follow the strategy of integrating out microscopic
fluctuations going from a microscopic description based on the Boltzmann equation to a
macroscopic level, where only the occupation numbers and the granular temperatures of the
compartments, i.e. the first two moments of the distribution function, are taken into account.
This is equivalent to neglecting inhomogeneities of the system at scales smaller than the linear
size of the compartments. By means of a simplifying ansatz for the velocity distribution
function we obtain a closed set of self-consistent differential equations for the occupation
numbers and the granular temperatures of the two compartments.

We discuss in some detail some selected applications of the method including a simple
granular gas in two compartments and in many compartments, and a binary mixture in two
compartments. In each case a linear stability analysis is performed, together with the numerical
solution of the non-linear coupled differential equations,and the relevant behaviours are shown.

2. Model

We consider an assembly of N inelastic hard spheres moving in a two-dimensional domain
partitioned into M identical regions of volume, V separated by vertical obstacles. Each
compartment contains Ni particles, where

∑M
i=1 Ni = N , and belongs to a one-dimensional

array.
The velocities after the collision, denoted with a prime, are obtained in terms of the

(unprimed) pre-collisional velocities through the relations

v′
1 = v1 − 1

2 (1 + α)(v12 · σ̂)σ̂,

v′
2 = v2 + 1

2 (1 + α)(v12 · σ̂)σ̂
, (1)

where v12 = v1 − v2, σ̂ is the unit vector directed from particle 1 to particle 2, and α is the
coefficient of restitution. The rate at which the kinetic energy is dissipated by collisions is
proportional to (1 − α2).

A particle in the i th box, besides colliding inelastically with the remaining (Ni − 1)

particles within the same box, is subjected to the action of a white noise random force, which
compensates the energy losses due to dissipative forces and stands for the external driving
force.

The dynamics of the kth particle between two successive collisions is governed by the
Langevin equation

dvk

dt
= − 1

τb
vk + ξk, (2)

where −τ−1
b vk is a viscous term and ξk a Gaussian random acceleration, whose average is

zero, and the variance satisfies a fluctuation-dissipation relation:

〈ξkµ(t)ξmν(t
′)〉 = 2

Tb

mτb
δkmδµνδ(t − t ′), (3)
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where Tb is proportional to the intensity of the driving [23] and µ, ν denote vector components.
The damping term renders the system stationary even in the absence of collisional dissipation
and physically represents the friction between the particles and the container.

Finally, the particles contained in compartment i can migrate into a nearest neighbour
compartment j with a probability per unit time τ−1

s , provided their kinetic energy exceeds the
fixed threshold Ts .

The single-particle phase-space distribution function f (r, v, t) for such a system can be
obtained by solving the associated inhomogeneous Boltzmann equation. However, by resorting
to the coarse graining approximation,

f (r, v, t) = fi (v, t) (4)

which is equivalent to replacing the dependence on the continuous variable r with a discrete
index i indicating the compartment where the point r is located, one obtains a much simpler
description. Within such an approximation one finds the following Boltzmann-like equation:

∂t fi (v, t) = I [v| fi , fi ] + B fi + X [v| fi , f j ], (5)

where the three terms on the right-hand side represent different physical mechanisms.
The first term, I , is the collision term which describes the effect of inelastic collisions

among particles belonging to the same compartment,B fi represents the action of the stochastic
driving force associated to the heat bath,andX [ fi , f j ] represents the flow between two adjacent
compartments.

Within Boltzmann’s chaos hypothesis, the integral I has the following representation:

I [v1| fi , fi ] = σ

∫

dv2

∫

dσ̂ θ(σ̂ · v12)(σ̂ · v12)

[
1

α2
fi (v′′

1) fi (v′′
2) − fi (v1) fi (v2)

]

. (6)

θ is the Heaviside step function, doubly primed symbols stand for pre-collisional velocities,
which can be computed by inverting equation (1), and the α2 factor in the denominator
incorporates the effect of inelasticity.

The forcing term assumes the form

B fi (v, t) = 1

τb

∂

∂v

(
Tb

m

∂

∂v
+ v

)

fi (v, t), (7)

while the exchange term can be written as

X [v| fi , f j ] = − 1

τs
θ(|v| − us)

∑

j

′
[ fi (v, t) − f j (v, t)], (8)

where us is the threshold velocity and the primed summation includes only the nearest
neighbours j of the site i .

To proceed further we consider the macro-state of the system, which can be characterized
by the average number, Ni (t), of particles occupying each compartment i at time t ,

Ni (t) =
∫

dr
∫

dv fi (v, t), (9)

and by the average kinetic energy (granular temperature), Ti (t), in each compartment:

Ni (t)Ti (t) =
∫

dr
∫

dv
mv2

2
fi (v, t). (10)

Using equation (5) one finds

dNi (t)

dt
= − V

τs

∑

j

′
∫

dv [ fi (v, t) − f j (v, t)]θ(|v| − us) (11)
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and
1

V
∂t(Ni Ti ) = m

2

∫

dv v2 I [v| fi , fi ] +
m

2

∫

dv v2B fi

− m

2τs

∑

j

′
∫

dv v2[ fi (v, t) − f j (v, t)]θ(|v| − us). (12)

In two dimensions, one can obtain a closed set of equations if one makes the following
Maxwell–Boltzmann (MB) approximation for the velocity distribution functions in each
compartment:

fi (v, t) = Ni (t)

V

m

2πTi (t)
exp

(

− mv2

2Ti (t)

)

. (13)

The assumed MB form is not necessary, but it is very convenient to make analytical
progress. On the other hand, to improve the present approximation, one could express the
velocity distribution as an MB distribution multiplied by a linear combination of orthogonal
polynomials, called Sonine polynomials [24]. This modification would allow us to include the
effect of fluctuations around the MB distribution, but for the sake of simplicity we shall not
pursue such a route.

In this case, Ni (t) and Ti(t) can be determined self-consistently by solving the following
governing equations, which are obtained by inserting equation (13) into (11) and (12):

dNi (t)

dt
= 1

τs
[Ni+1e−Ts/Ti+1 + Ni−1e−Ts/Ti−1 − 2Ni e−Ts/Ti ] (14)

and

Ni
dTi (t)

dt
= 1

τs
[2(Ni+1Ti+1e−Ts /Ti+1 + Ni−1Ti−1e−Ts/Ti−1 − 2Ni Ti e

−Ts /Ti )

+ (Ni+1e−Ts/Ti+1 + Ni−1e−Ts /Ti−1 − 2Ni e−Ts /Ti )(2Ts − Ti)]

− 2γωi Ni Ti +
2

τb
Ni (Tb − Ti), (15)

where the dissipation rate [24]

γωi = σ(1 − α2)
Ni

2V

√
Ti

m
(16)

stems from the collision integral and σ is the hard-disc diameter.
When the rate of exchange of particles between two adjacent compartments is low, one

can approximate the granular temperature, Ti(t), by a local function of the instantaneous value
of the number of particles Ni (t). This temperature is the solution of the non-linear equation:

Ti

[

1 + τbσ(1 − α2)
Ni

2V

√
Ti

m

]

= Tb. (17)

By substituting Ti(t) in equation (14), the governing law of the system takes the simpler
form:

dNi (t)

dt
= 1

τs
[�(Ni+1) + �(Ni−1) − 2�(Ni )], (18)

where �(N) is depicted in figure 2. Equation (18) has the same form as the one which is at the
heart of the so-called Flux model [12]. We notice that the detailed shapes of � in the Flux model
and in our model are not identical, because they have been derived from different assumptions.
However, the two models share the same non-monotonic behaviour of � as a function of N .
This is sufficient to give similar qualitative results. In the sub-critical region, the existence



S2646 U M B Marconi et al

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N

0

10

20

30

40

50

60

70

Φ

Figure 2. Flux function versus particle number for two different values of the heat bath temperature.
The dashed curve represents a supercritical case, where the function is monotonically increasing
as a function of the number of particles considered. The continuous curve, instead, describes a
situation where due to the presence of a maximum there can be a balance of fluxes from unequally
populated compartments.

of multiple roots of the non-linear equation �(N) = constant (see figure 2), corresponds to
stationary solutions of the coupled equations (18) with Ni not necessarily the same in each
cell. In other words, the flux from a relatively empty compartment can be balanced by the flux
from a well filled compartment.

3. One species in two compartments

In the present section we illustrate the simplest application of the formalism above. Let us
consider only two compartments, named A and B, and non-periodic boundary conditions,
which mean that the exchange of energy and matter occurs only through the central dividing
barrier. In this case we write
dNA (t)

dt
= 1

τs
[NBe−Ts /TB − NAe−Ts /TA ] (19)

d[NA(t)TA(t)]

dt
= − 2

τs
[NA(TA + TS)e−Ts/TA − NB (TB + TS)e−Ts/TB ]

− 2γωA NATA +
2

τb
NA(Tb − TA) (20)

d[NB(t)TB(t)]

dt
= − 2

τs
[NB (TB + TS)e−Ts/TB − NA(TA + TS)e−Ts /TA ]

− 2γωB NB TB +
2

τb
NB (Tb − TB). (21)

The choice NA = NB = N∗ = N/2 and TA = TB = T ∗ represents a stationary solution of
equations (19)–(21) for all values of the control parameters. The temperature T ∗ is given by
the non-linear equation:

T ∗
[

1 + τbσ(1 − α2)
N∗

2V

√
T ∗

m

]

= Tb. (22)
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Figure 3. Variation of the eigenvalues λ1, λ2, λ3 with respect to the granular temperature. Notice
the temperature interval where λ1 is positive and the symmetric configuration is unstable with
respect to clustering.

On the other hand, such a symmetric solution is unstable below a certain temperature. This
can be determined by performing a linear stability analysis, that is, assuming TA = T ∗ + δTA,
TB = T ∗ + δTB and NA = N∗ + δNA (δNB = −δNA) and expanding the equations to first
order about the fixed point T ∗, N∗. The resulting three relaxation modes are characterized
by eigenvalues λ1 > λ2 > λ3. In figure 3 we sketch the temperature dependence of the
eigenvalues of the dynamical matrix.

Only λ1 is relevant to our analysis. Its sign becomes positive below a special temperature
T ∗

cr, determined by the condition λ1 = 0, indicating that the symmetric solution becomes
unstable. Such a regime corresponds to the non-symmetric solutions which are observed for
weak external drive. The value of T ∗

cr depends on the inelasticity and the particle density for
a fixed value of the external driving intensity. When the system becomes perfectly elastic
(α = 1, T ∗

cr → 0), since there is no clustering instability in a system of elastic particles.
In the case of unequally populated compartments the asymptotic (t → ∞) values of the

numbers of particles in the two compartments are related by the equation

NB

NA
= e−Ts/TA

e−Ts/TB
, (23)

where the two granular temperatures are determined by the condition that the granular
temperature at the right and the one at the left are constant solutions of equations (20) and (21).

The full time-dependent solutions of equations (19)–(21) have been obtained numerically
by an Euler integration scheme and are displayed in figure 4, illustrating three different regimes.

For temperatures below T ∗
cr the perturbation initially grows at an exponential rate exp(λ1t),

as predicted by the previous linear stability analysis, and saturates asymptotically at a finite
value. The resulting ‘phase diagram’ is shown in figure 5.

The above results can be compared with those of other groups. The experiments [13]
seem to indicate that the separation process occurs continuously in a two-compartment set-up
and discontinuously with three or more compartments. The two-urn model [14], in addition
to having a line of continuous transitions, has a tricritical point and a line of discontinuous
transitions. The discontinuous transitions are difficult to observe due to the strong metastability.
The model we have considered presents the same features as the two-urn model.
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Figure 4. Two-compartment system. Left figure: evolution of the granular temperature in each
compartment. The three cases correspond to three different values of the heat bath temperature. The
two lower cases represent symmetry breaking situations, the upper curve (dotted line) represents a
symmetric situation. Right figure: temporal evolution of the populations in the two compartments.
The two non-symmetric solutions (continuous and dashed) correspond to subcritical cases, whereas
the symmetric solution corresponds to a supercritical case.
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Figure 5. Two-compartment system. Order parameter ε = |NA − NB |/N versus total number of
particles in the system N , and granular temperature of each compartment versus N . Notice the
bifurcation of the temperature curve, corresponding to the symmetry breaking.

4. One species in many compartments

The case of N particles in M identical compartments with cyclic boundary conditions has
been studied by in [12, 13, 21]. A uniform solution of equations (14) and (15) is represented
by Ni = N∗ = N/M and Ti = T ∗, where T ∗ is a function of N∗ (via equation (17)).
Such a solution exists for all values of the control parameters, but is stable only at high
temperatures. In analogy with the two-compartment case, the translational symmetry is broken
at low temperatures of the driving heat bath. To show that, let us introduce a small sinusoidal
perturbation about the uniform state: Tl = T ∗ + δTk exp(ikl), and Nl = N∗ + δNk exp(ikl),
where k = 2πn/M , with n = 1, . . . , M − 1 and l = 1, . . . , M denotes the compartment.

Expanding linearly equations (14) and (15) about the symmetric fixed point T ∗, N∗, one
finds the equations:

δ Ṅk = − 1

τs
e−Ts/T ∗

2(1 − cos(k))

[

δNk +
N∗Ts

(T ∗)2
δTk

]

(24)
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Figure 6. Three possible behaviours of the eigenvalue λ1(k) relative to the many-compartment
system. The two upper curves refer to weak driving situations where the uniform profile is unstable
with respect to density fluctuations.

δṪk = − 1

τs
e−Ts/T ∗

[(

2 +
Ts

T ∗ + 2

(
Ts

T ∗

)2)

(1 − cos(k)) +

(

3γω∗ +
2

τb

)]

δTk

− 2

N∗

[
1

τs
e−Ts/T ∗

(T ∗ + 2Ts)(1 − cos(k)) + γω∗T ∗
]

δNk . (25)

In this case, one finds two families of eigenvalues λ1(k) and λ2(k), a pair for each value
of k, corresponding to the two relaxation modes of the system. The larger eigenvalue λ1(k)

vanishes quadratically in the limit k → 0, due to the conservation of the total number of
particles, and displays a non-trivial behaviour for finite values of k, which is captured by the
following small-k expansion:

λ1(k) = a2k2 + a4k4, (26)

where the coefficient a2 is given by the formula

a2 = 1

τs
e−Ts /T ∗

[
Tc

T ∗ − 1

]

(27)

and becomes positive below the temperature Tc:

Tc = Ts
3
2 + 1

τbγω∗
. (28)

Above Tc, a2 is negative, and a local density fluctuation is re-absorbed.
In contrast, below Tc a fluctuation, which locally increases the population, is amplified

and clustering occurs. The local granular temperature, Ti , drops due to the increased collision
rate, since from equation (16) one sees that ωi ∝ Ni T

1/2
i ∝ N2/3

i , being Ti ∝ N−2/3
i . Thus the

particles arriving from the other compartments remain trapped, causing a further reduction of
the local temperature.

According to the sign of a4 (for a2 > 0) one observes different initial regimes: if a4 < 0,
λ1(k) may display a maximum at a finite wavevector, km < 2π , whereas for a4 > 0, λ1(k)

attains its maximum only in correspondence of the largest wavevector as displayed in figure 6.
In the first case, associated with the dashed curve in figure 7 (a2 > 0 and a4 < 0), there is
a fastest growing wavelength at early times. Thus the process resembles the early stage of
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Figure 7. Coarsening process in the low-temperature phase. The initial nearly uniform profile
becomes unstable and the population of a few compartments grows at the expense of the others.
Picture A refers to an early stage, and B to a late stage.

spinodal decomposition, because the homogeneous state is unstable and all modulations of the
order parameter with k such that λ1(k) > 0 grow, but the maximum growing rate corresponds
to the maximum of the dashed curve in figure 7 [25].

To study the late-stage behaviour of the solutions one has to go beyond the linear stability
analysis. This is achieved by solving numerically the governing non-linear equations (14)
and (15). The asymptotic solution may depend on the initial state. In [21] a one-dimensional
array of compartments, initially equally populated, at the same granular temperature, i.e. Ni =
N∗ and Ti = T ∗, plus a small random perturbation was considered, and different behaviours
were observed as some control parameters, such as the heat bath temperature and the average
density, were varied. For Ti > Tc, the initial perturbation is re-adsorbed diffusively, while
below Tc the perturbation is exponentially amplified in the initial stage. In the latter case, the
collisional cooling determines a decrease of the local temperature in correspondence of the
more populated regions, and clustering begins. Some compartments, randomly selected by
the dynamics, act as germs for the nucleation process illustrated in figure 7. After the initial
regime a few compartments grow at the expense of the remaining ones, which become empty.
We observe that the domains do not grow in width, but in height, with a law N(t) ∼ t1/2, and
they do not merge.

Clustering has been measured by defining a statistical indicator, with the property of
vanishing when all particles are confined in a single compartment and of taking its maximum
value, ln(M), when all compartments are identically populated:

h = −
M∑

i

Ni

N ln

(
Ni

N

)

. (29)

In pictorial language f = exp(h) represents the number of occupied compartments. Above
Tc, f relaxes towards M , meaning that all compartments are occupied, whereas in the low
temperature region f settles at a value P < M , meaning that only a few compartments are
effectively filled. To characterize such a process we consider the characteristic time τ necessary
to grow a domain, i.e. to have f 	 M , starting from a nearly homogeneous configuration.
Such a time τ depends on the temperature, and as T ∗ approaches Tc from below, its variation,
displayed in figure 8, is captured by the following Vogel–Fulcher law:

τ = A exp[�/(Tc − T ∗)], (30)

where � is a constant. The dependence of the characteristic time τ on the temperature is a
direct consequence of the functional dependence of a2 on the temperature (see equations (26)
and (27)).
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Figure 8. Time, τ , which characterizes the clustering of the granular gas in a single compartment as
a function of the temperature, starting from an array of M = 100 compartments equally populated.
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Figure 9. Variation of the height of a cluster, initially containing 1200 particles, as a function of
time for temperatures Tb = 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 and 0.60 from top to bottom.

A different phenomenon, which has recently attracted some attention [12], is the sudden
collapse of a granular cluster. Experiments show that a configuration in which the majority of
the grains are located in a single compartment remains stable for a long time until the grains
suddenly leave the compartment and diffuse through the system.

Within the present approach, according to the noise intensity of Tb one can observe two
different relaxation processes: (a) for large Tb the occupancy of the compartment decays
towards the fully symmetric state Ni = N/M; (b) for small Tb the occupancy of the
compartment remains constant.

In figure 9 we display how the occupancy of an initially filled compartment evolves in
correspondence of various values of the heat bath temperature. We observe that N(t) decreases
more and more slowly as the transition temperature is approached from above. Figure 9 also
shows the appearance of a plateau when Tb → T0, whose length diverges at T0. Below the
temperature T0 the cluster is stable. Numerical calculations show that the persistence time τ

of the single-cluster configuration can be described by τ = C/(Tb − T0)
3/2, which diverges at

the crossover temperature T0, which is a function of the system size and of the cluster height.



S2652 U M B Marconi et al

5.0 .10
2

1.0 .10
3

1.5 .10
3

0

20

40

60

N
1, N

2

5.0 .10
2

1.0 .10
3

1.5 .10
3

0

20

40

60

5.0 .10
2

1.0 .10
3

1.5 .10
3

t /τ
s

0

20

40

60

N
1, N

2

5.0 .10
2

1.0 .10
3

1.5 .10
3

t /τ
s

0

20

40

60

A B

DC

Figure 10. Four different behaviours obtained by varying the dimensionless parameter RMF, and
keeping the mass ratio m2/m1 = 8 and the population ratio N1/N2 = 70/20. The continuous
line (N1) refers to the light species and the dotted line (N2) to the heavy species, both in the
right compartment. In panel A (RMF = 6.0) the asymptotic solution is symmetric. In panel B
(RMF = 12) the occupation numbers oscillate in time. Panel C (RMF = 24) shows a case where the
solution displays oscillations with longer periods. Finally, panel D (RMF = 48) illustrates a typical
symmetry-breaking solution, where occupation numbers in the two compartments are different, for
each species. The time is measured in units τs .

5. Mixture in two compartments

In the present section we shall briefly discuss the effect of bi-dispersity into the system.
Mikkelsen et al [26] have studied experimentally the behaviour of a bi-disperse granular
mixture of small and large particles in a compartmentalized geometry, and they showed that
the system has a tendency to cluster competitively.

The mean-field treatment employed in the previous sections has been extended to mixtures
of grains of different sizes and/or masses [22]. In this case, the macro-state of the system was
identified by two occupation numbers, one for each species, and by four granular temperatures,
one for each species and each compartment. Again, for strong driving only a symmetric
configuration, characterized by equal values of the state variables in the two compartments,
was found. However, for small driving intensity or high dissipation the configuration ceases to
be symmetric, and the particles of both species tend to cluster in one of the two compartments
in agreement with the experimental observations. In figure 10 we show the temporal evolution
of occupation numbers for the two species (in a single compartment) for different choices
of the driving intensity. We observe two dynamical scenarios. In the first scenario, the
occupation numbers approach a stationary symmetry-broken solution via a simple bifurcation
(i.e. a critical point). This corresponds to the situation considered in [20], and occurs for small
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Figure 11. Phase diagram for a system with N1 = 70 light particles and N2 = 20 heavy particles.
The transition values of RMF are plotted as functions of the mass ratio m2/m1.

mass differences or small concentrations (m2/m1 = 2, for example). In the second scenario,
the temporal evolution of the occupation numbers approaches a limit cycle, so particles of
each species oscillate back and forth between compartments. This occurs when the difference
in mass is large, or when masses are equal but sizes are different enough [27]. Such a non-
steady regime has no counterpart in the case of mono-disperse granular gases. Specifically,
when the mass difference between the two species exceeds a certain threshold the populations
display a bistable behaviour, with particles of each species switching back and forth between
compartments.

Oscillations have their origin in the mass and/or size difference between the two species
and in the associated breakdown of energy equipartition that occurs in a binary vibrated granular
gas [28–32]. After an initial clustering of both species in a single compartment—say the left—
a net rightward flux of light particles establishes and persists until a sufficient number of them
have changed compartment. At this point the heavy particles, too, start jumping to the right,
eventually creating in the right compartment a cluster of both species which is totally similar
to the initial situation of the left compartment. After reaching this stage, the process repeats
itself in the opposite direction.

In [22] the mean-field ‘phase diagram’ of the model was obtained, using as control
parameter the variable RMF ∝ (1 − r2) N 2

V 2
Ts
Tb

, which has the property of decreasing for large
driving intensities and of increasing when r → 0 and/or the density increases. The resulting
‘phase diagram’2 in the plane RMF versus m2/m1 is shown in figure 11. No oscillations can
be observed for small mass asymmetry ( m1

m2 
 1), and the crossover from the symmetric phase
to the asymmetric phase is similar to what occurs in the case of a one-component system.
However, when the mass asymmetry increases (m2/m1 > 3), an intermediate oscillatory
regime appears, and no stationary solution is attained anymore.

The effect of concentration on the appearance of oscillations is instead shown in figure 12.
For small concentrations of the heavy species c = N2/(N1 + N2), where N1 and N2 are the total
number of light particles and heavy particles, respectively, there is a direct crossover, as RMF

decreases, from the asymmetric ‘phase’ to the symmetric ‘phase’. When the concentration,
c, increases, there appears an island of the oscillating ‘phase’, which subsequently disappears

2 As also noticed by Barrat and Trizac the transitions observed are not true phase transitions since they are controlled
by the system size. Fluctuations can always bring the system from one of the asymmetric states to the other.
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Figure 12. Phase diagram for a system with N1 + N2 = 90 particles as a function of N2/(N1 + N2),
for a mass ratio m2/m1 = 4.

when c becomes too large. The oscillation period decreases as RMF decreases and is larger
near the boundary between the ‘broken phase’ and the ‘oscillatory phase’.

The interesting possibility of separating the two components of the mixture by a similar
device has been investigated, but it has been found that the segregation process is not very
efficient [29].

6. Numerical studies

The compartmentalized system has attracted attention in recent years and has been the subject
of several numerical studies. These studies have been performed by event-driven simulations
and direct simulation Monte Carlo (DSMC).

In the DSMC study [20] each particle evolves in time according to an Ornstein–Uhlenbeck
process, simulating the interaction with the moving base, and collides inelastically with the
remaining particles. In addition, each particle can change compartment with a probability per
unit time τ−1

s , provided its energy exceeds the threshold, Ts . Since the algorithm is stochastic,
the number of particles and kinetic energies in each compartment are subject to temporal
fluctuations around their stationary values. In figure 13 we display the distribution of the
occupancy of a compartment for three different values of the driving intensity. Interestingly,
the distribution displays a single symmetric peak for strong driving, a pronounced broadening
close to the critical driving two sharp and well separated peaks for weak driving.

Whereas the DSMC method is very efficient, it does not allow one to account properly
for the mutual strong short-range repulsion between the particles. Such a repulsion can be
properly described by means of a molecular dynamics event-driven simulation technique.
A few numerical studies have been conducted using such an algorithm (see [22, 27, 29]).
Qualitatively the numerical simulation results agree with the mean-field predictions as shown
in [22], but the comparison remains difficult at a quantitative level due to the approximations
involved in deriving the mean-field theory [22].

7. Related models describing granular gases in compartments

In a recent series of papers, Cecconi et al [33] have investigated by means of molecular
dynamics and phenomenological arguments the properties a one-dimensional model of a
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compartmentalized system. The advantage of the one-dimensional modelling consists in the
fact that it allows an exact treatment of the hard-core interaction and of the spatial gradients at
a reasonable computational effort. In addition, theoretical predictions are easier, because the
properties of the reference elastic fluid are known. These authors have studied a few relevant
situations such as the two-well problem and a periodic array of identical wells. In particular
they have derived numerically the shape of the flux function, �, for such a model and verified
the appearance of a non-monotonic behaviour, as the inelasticity increases. These findings
agree with the mean-field analysis reported above.

8. Conclusions

To summarize, we have presented a mean-field description of vibro-fluidized granular matter
in compartments. We have derived a Fokker–Planck–Boltzmann description starting from the
stochastic evolution of the particle coordinates. Next, by employing a Gaussian ansatz for the
velocity distribution function, we have obtained a closed set of equations for the slowly varying
fields, namely the granular temperatures and occupation numbers of each compartment. With
respect to existing flux models, our approach treats the granular temperature analytically on
an equal footing to the occupation variables.

The systems investigated display a rich variety of behaviours which are determined by the
inelasticity. For a one-component fluid enclosed in a two-compartment vessel, a mild shaking
leads to a symmetry breaking where a dense phase cold ‘phase’ and a rarefied hot ‘phase’
coexist. For vigorous shaking, the two ‘phases’ become identical, and the compartments have
the same populations.

The extension to many compartments has been considered, and the main results concern the
growth process of the populations in each compartment starting from a uniform distribution.
Such a growth resembles in the initial stage the domain growth process following a high-
temperature quench in the Cahn–Hilliard model. A measure of the complexity of the profile
has been employed in order to characterize the ordering process.

Finally, the theory has been applied to a bi-disperse granular mixture and the observed
oscillatory solutions, not present in mono-disperse systems, have also been found in molecular
dynamics simulations.
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[1] Pöschel T and Luding S (ed) 2001 Granular Gases (Springer Lecture Notes in Physics vol 564) (Berlin: Springer)
[2] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259 and references therein
[3] Umbanhowar P B, Melo F and Swinney H L 1996 Nature 382 793
[4] Shinbrot T and Muzzio F J 2001 Nature 410 251
[5] Goldhirsch I and Zanetti G 1993 Phys. Rev. Lett. 70 1619
[6] Goldhirsch I, Tan M L and Zanetti G 1993 J. Sci. Comput. 8 1
[7] McNamara S and Young W R 1994 Phys. Rev. E 50 R28
[8] Baldassarri A, Marini Bettolo Marconi U and Puglisi A 2002 Phys. Rev. E 65 051301
[9] Schlichting H J and Nordmeier V 1996 Math. Naturwiss. Unterr. 49 323

[10] Eggers J 1999 Phys. Rev. Lett. 83 5322
[11] van der Meer D, van der Weele K and Lohse D 2001 Phys. Rev. E 63 061304
[12] van der Meer D, van der Weele K and Lohse D 2002 Phys. Rev. Lett. 88 174302
[13] van der Weele K, van der Meer D and Lohse D 2001 Europhys. Lett. 53 328
[14] Lipowski A and Droz M 2002 Phys. Rev. E 65 031307

Lipowski A et al 2002 Phys. Rev. E 66 016118
Coppex F et al 2002 Phys. Rev. E 66 011305

[15] Shim G M, Park B Y, Noh J D and Lee H 2004 Phys. Rev. E 70 031305
[16] Ehrenfest P and Ehrenfest T 1990 The Conceptual Foundations of the Statistical Approach in Mechanics

(New York: Dover)
Kac M and Logan J 1987 Fluctuation Phenomena ed E W Montroll and J L Lebowitz (Amsterdam: North-

Holland)
[17] Spitzer F 1970 Adv. Math. 5 246
[18] Evans M R and Hanney T 2005 Preprint cond-mat/0501338
[19] Javier Brey J, Moreno F, Garcı́a-Rojo R and Ruiz-Montero M J 2002 Phys. Rev. E 65 011305
[20] Marini Bettolo Marconi U and Puglisi A 2003 Phys. Rev. E 68 031306
[21] Marini Bettolo Marconi U and Conti M 2004 Phys. Rev. E 69 011302
[22] Costantini G, Cattuto C, Paolotti D and Marini Bettolo Marconi U 2005 Physica A 347 411
[23] The external drive is modeled via a stochastic force. See Puglisi A, Loreto V, Marini Bettolo Marconi U,

Petri A and Vulpiani A 1998 Phys. Rev. Lett. 81 3848
Puglisi A, Loreto V, Marini Bettolo Marconi U and Vulpiani A 1999 Phys. Rev. E 59 5582

[24] Van Noije T P C and Ernst M H 1998 Granular Matter 1 57
[25] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
[26] Mikkelsen R, van der Meer D, van der Weele K and Lohse D 2001 Phys. Rev. Lett. 89 214301
[27] A similar observation was reported by Lambiotte R and Salazar M 2003 Preprint
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